Real Time Eyeball Tracking via Derivative Dynamic Time Warping for Human-Machine Interface

N. Mokhtar¹,*, H. Arof¹ and M. Iwahashi²

¹Department of Electrical Engineering
Faculty of Engineering, University of Malaya
50603 Lembah Pantai, Kuala Lumpur
Malaysia

*Corresponding author: norrimamokhtar@um.edu.my, norrimamokhtar.um@gmail.com

²Faculty of Engineering
Nagaoka University of Technology
Kamitomioka 1603-1, Nagaoka-Shi, Niigata
940-2188 Japan

Received March 2010; revised September 2010

ABSTRACT. In this paper, a real time, user independent eyeball tracking approach is presented. The system is implemented using a low cost webcam. The robustness of the system is measured by several criteria such as users of different age where some of the users are wearing glasses under varying lighting condition, pose, eye orientation and distance from camera. The size and location of the region of interest which contains both eyes is made adaptive. Derivative Dynamic Time Warping is chosen as the classifier for this experiment since it can match patterns from data sequences with different lengths. Finally, the results, advantages, limitations and future works of the proposed method are reported. The online eye tracking procedure shows good accuracy and robustness when processing online image sequences at 50 frames/s on a 253 GHz Pavilion DV4 HP notebook.

Keywords: Eyeball tracking, adaptive region of interest, Derivative Dynamic Time Warping, varying illumination condition.

1. Introduction. The disable community require special equipments to perform daily chores and other tasks. Human-computer interface (or interaction) technology may provide a means to assist them to lead a more independent life [1]. Common methods that realize human-machine interaction make use of brain, speech or visual signals as inputs to a computer or machine to perform specific tasks. For example, relative iris positions can be used as a cue to a vision system indicating which direction to go. In this paper, a real time eyeball tracking approach is presented wherein the position of the irises are located.
Table 1 summarizes some of the works involving facial feature recognition by comparing the databases, image processing techniques and classifiers used. In some of the works, images are obtained from well known facial image databases [2, 3, 4, 5, 6, 7, 8, 9], while in others, the images are captured online using compound eye imaging [10], cameras [11, 12, 13, 14] and CMOS digital imaging sensor [15]. Other approaches by Ohno et al. [16] used scanned images as input while Tsai [17] utilized captured gray scale images as compared to databases. For our proposed method, the input is acquired via online USB webcam.

In the majority of the methods in Table 1, the data (images) are treated as two dimensional (2D) arrays and thus 2D operations are performed on them [3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17]. However, in the work of Wijaya et al. [2], the image undergoes discrete cosine transformation and then the result is subjected to one dimensional analysis which consists of row and column operations. From Table 1, it can be observed that common image processing techniques are widely used together with statistical, neural and other types of classifiers. Apparently, each approach has its own advantages and requirements which are summarized in Table 2.

In this paper, a real time eyeball tracking system using DDTW (Derivate Dynamic Time Warping) is proposed. The system is user independent and is robust against minor variations in lighting and pose. The DDTW is chosen as our classifier due to its ability to perform identification despite variations in the sizes of the ROI (the region of interest which contains both eyes) and eyes. These variations occur when the distance between the user and the camera changes. Even when this distance is more or less fixed, the sizes of the ROI and eyes differ from person to person. The strength of the DDTW as a classifier stems from its ability to match two strings of one dimensional data of different length based on their pattern.

2. **Methodology: DDTW (Derivative Dynamic Time Warping).** DDTW is an improved version of the classic DTW (Dynamic Time Warping) method [18, 19]. While DTW matches two data sequences directly, DDTW obtains the first derivative of the data and then matches them. In this paper, only DDTW is described since it is used as the classifier of the system. Steps taken in the DDTW algorithm are shown in the flowchart in Figure 1.

Consider two data sequences X and Y of length n and m where \(x_i \) and \(y_j \) are the \(i \)th and \(j \)th elements of the first and second sequences respectively. To align the two sequences using DDTW we need to estimate the derivative of the two sequences first. At every data point (except endpoints), the derivatives are calculated as follows:

\[
D_X(i) = \frac{((x_i - x_{i-1}) + ((x_{i+1} - x_{i-1})/2))}{2}
\]

\[
D_Y(j) = \frac{((y_j - y_{j-1}) + ((y_{j+1} - y_{j-1})/2))}{2}
\]
TABLE 1. Image source, image processing techniques, preprocessing and classifier comparisons between existing works.

<table>
<thead>
<tr>
<th>Authors [reference number] / Objectives</th>
<th>Image source / Database</th>
<th>Image processing techniques / pre-processing</th>
<th>Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed method / Eyeball detection</td>
<td>USB Webcam</td>
<td>Gray scale transformation, image subtraction, autothreshold, binarization, one dimensional conversion of the image information (rows and columns)</td>
<td>DDTW</td>
</tr>
<tr>
<td>Wijaya et al. [2] / Face recognition</td>
<td>ITS-Lab database, Kumamoto University, EE-UNRAM, Indian Face Database, Olivetti research laboratory(ORL)</td>
<td>Gray scale transformation, equalization, 1D-DCT analysis (rows and columns)</td>
<td>Extraction of dominant frequency features, multi-resolution metrics (similarity level based on statistical features, query frequency features and target frequency features)</td>
</tr>
<tr>
<td>Lin et al. [3] / Face recognition</td>
<td>CSU Face Identification Evaluation System</td>
<td>Geometric normalization, masking, histogram equalization and pixel normalization</td>
<td>PCA-Based SIFT with K-means algorithm</td>
</tr>
<tr>
<td>Zhou et al. [5] / Image reconstruction for face recognition</td>
<td>Olivetti research laboratory(ORL) database, Yale face database, Georgia Tech face database</td>
<td>Centering, whitening, eigen-subspace</td>
<td>Fast ICA</td>
</tr>
<tr>
<td>Zheng et al. [6] / Eye features extraction</td>
<td>SJTU database (single eye image)</td>
<td>H channel of HSV colour space</td>
<td>Gabor eye-corner filter</td>
</tr>
<tr>
<td>Feng et al. [7] / Multi-cues eye detection</td>
<td>Face database from MIT AI laboratory</td>
<td>Snake algorithm, histogram to extract face region, erosion, dilation</td>
<td>Eye variance filter (potential eye window), Variance projection function (eye detection)</td>
</tr>
<tr>
<td>Li et al. [8] / Eye detection</td>
<td>AR face database, Rowley database</td>
<td>Histogram equalization, segmentation, edge detection, multithreshold</td>
<td>Similarity measure</td>
</tr>
<tr>
<td>Song et al. [9] / Eye detection</td>
<td>150 Bern images, 564 AR images</td>
<td>Multi-resolution wavelet transform, binary edge image, intensity</td>
<td>None</td>
</tr>
<tr>
<td>Miyazaki et al. [10] / Reconstruction of three dimensional image</td>
<td>Compound-eye imaging with defocus</td>
<td>Modified pixel rearrangement method for 3-D object, super-resolution algorithms</td>
<td>None</td>
</tr>
<tr>
<td>Kawato et al. [11] / Detection and tracking of eyes</td>
<td>Two cameras</td>
<td>Binarization, image differentiation</td>
<td>Geometry and pattern symmetry at face midpoint, template matching</td>
</tr>
<tr>
<td>Zhu et al. [12] / Eye detection</td>
<td>IR camera</td>
<td>Image subtraction, adaptive autothreshold, binarization</td>
<td>Support vector machine(SVM), Kalman pupil tracker</td>
</tr>
<tr>
<td>Bin et al. [13] / Face detection</td>
<td>USB camera</td>
<td>Log likelihood and threshold</td>
<td>Continuous Adaptive Mean SHIFT</td>
</tr>
<tr>
<td>Santis et al. [14] / Eye tracking</td>
<td>Low cost video camera</td>
<td>Binarization, four level segmentation, histogram for proper frame zoning</td>
<td>None</td>
</tr>
<tr>
<td>Amir et al. [15] / Eye detection sensor</td>
<td>CMOS digital imaging sensor</td>
<td>Image subtraction, threshold, find connected components, moments of components</td>
<td>None</td>
</tr>
<tr>
<td>Ohno et al. [16] / Content based image retrieval</td>
<td>24 scanned color images</td>
<td>Similarity measure</td>
<td>Correlation to reference images</td>
</tr>
<tr>
<td>Tsi [17] / Adaptive thresholding</td>
<td>300 captured grey scale images</td>
<td>Quadtree data structure, simulated annealing</td>
<td>Otsu thresholding</td>
</tr>
</tbody>
</table>
Table 2. Comparison of advantages and requirements of the proposed and the existing works.

<table>
<thead>
<tr>
<th>Authors [reference number] / Objectives</th>
<th>Advantages</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed method / Eyeball detection</td>
<td>Allow head movement, mouth movement, different background, user with and without glasses, different age, pose variation, eye orientation and distance variation</td>
<td>All users to focus at camera</td>
</tr>
<tr>
<td>Wijaya et al. [2] / Face recognition</td>
<td>Solved the retraining problem of PCA based face recognition, good performance</td>
<td>Same background for better performance comparison</td>
</tr>
<tr>
<td>Lin et al. [3] / Face recognition</td>
<td>Lower computational complexity, reduce dimension of feature space, robust to accessory and expression variation</td>
<td>Local descriptor, reservation of face region</td>
</tr>
<tr>
<td>Zhou et al. [4] / Face recognition</td>
<td>Reduce dimensionality and maintain facial features, alleviation of nonuniform illumination</td>
<td>None</td>
</tr>
<tr>
<td>Zhou et al. [5] / Image reconstruction for face recognition</td>
<td>Convenient for enlarging database, system’s expansibility</td>
<td>Running time</td>
</tr>
<tr>
<td>Zheng et al. [6] / Eye features extraction</td>
<td>Color image</td>
<td>Estimated eye window is known</td>
</tr>
<tr>
<td>Feng et al. [7] / Multi-cues eye detection</td>
<td>Iris and eye corner locations detection</td>
<td>Limited hairstyles</td>
</tr>
<tr>
<td>Li et al. [8] / Eye detection</td>
<td>Eye and non-eye differentiation</td>
<td>Fuzzy template</td>
</tr>
<tr>
<td>Song et al. [9] / Eye detection</td>
<td>Variation in views and gaze directions</td>
<td>Users without glasses</td>
</tr>
<tr>
<td>Miyazaki et al. [10] / Reconstruction of three dimensional image</td>
<td>Defocus-blur restoration</td>
<td>Optical module, electronic signal processing module</td>
</tr>
<tr>
<td>Kawato et al. [11] / Detection and tracking of eyes</td>
<td>Allow head movement</td>
<td>Face midpoint test</td>
</tr>
<tr>
<td>Zhu et al. [12] / Eye detection</td>
<td>Successfully detect multiple face orientation</td>
<td>Same race with training image</td>
</tr>
<tr>
<td>Bin et al. [13] / Face detection</td>
<td>Moving face target</td>
<td>Background noise elimination</td>
</tr>
<tr>
<td>Santis et al. [14] / Eye tracking</td>
<td>Illumination change resistant</td>
<td>Image optimal segmentation, proper frame zoning</td>
</tr>
<tr>
<td>Amir et al. [15] / Eye detection sensor</td>
<td>Developed special hardware-based embedded system for eye detection</td>
<td>User without glasses</td>
</tr>
<tr>
<td>Ohno et al. [16] / Content based image retrieval</td>
<td>Simple</td>
<td>Subjective choice of the reference images</td>
</tr>
<tr>
<td>Tsai [17] / Adaptive thresholding</td>
<td>Lower misclassification error than Otsu thresholding</td>
<td>Additional computation</td>
</tr>
</tbody>
</table>

To align the two sequences using DDTW we construct an $n \times m$ matrix where the (i, j) element of the matrix contains the distance $d(D_X(i), D_Y(j))$ between the two points $D_X(i)$ and $D_Y(j)$ where d is the square of the difference between $D_X(i)$ and $D_Y(j)$. A warping path W, is a contiguous set of matrix elements that maps datapoints in X and Y. There are numerous possible mapping paths but we are only interested in the one that gives the minimum accumulated distance of the adjacent elements. Further constraints like continuity, monotonicity and other boundary conditions can be imposed on the warping paths depending on the applications.

The backtracking calculation will not be discussed since the information is not used in our eyeball tracking systems. However, the information is useful if reconstruction is essential. Further details on DDTW can be found in [18-19].
2.1 Real time eyeball tracking algorithm. The flowchart for the real time eyeball tracking is shown in Figure 2. The entire program was developed using the LabVIEW Software (version 8.2) by National Instruments. The process starts with the USB webcam initialization. Once the image acquisition is done, the previous frame and the current frame of the images are kept in the memory buffer. These buffers are always updated. Then, image subtraction between the current frame and the previous frame is performed. Figure 3(a), shows the result of the subtraction process. From the subtracted image, binarization is done by segregating pixels with higher pixel values from those with lower values.

As can be seen in Figure 3(b), after binarization the eyes are marked as the white area. From this image, the intensities of pixels in the white areas are summed in row and column directions. The one dimensional arrays containing the sums of intensities of pixels in the white areas for each row and column are shown in Figure 4. They are called the online row and column arrays. These arrays are then matched with the template arrays (called the offline row and column arrays) using DDTW. If the offline and online arrays (which contain sequence of data) are matched, the calculated total distance d will be minimized as shown in Figure 4(a). Since our region of interest (ROI) is only the area that contains both eyes, we need to separate this area from other areas considered as the background. Thus we
set a threshold such that if the online data represents the ROI, the obtained \(d \) (total minimum distance) should be lower than the threshold value. If \(d \) is less than the threshold value, then the small motion detector is triggered which indicates blinking eyes are detected as shown in Figure 4(b). The other motion such as movement in the background, head, mouth and nose movements will produce higher \(d \) (total minimum distance).

![Flowchart of real time eyeball tracking.](image)

After the small motion detector is triggered, the region of interest is set automatically based on the areas of the blinking eyes thresholded from the subtracted image. Then, from this region of interest, offline eye data and online eye data are matched using DDTW to classify the eyes. If both data are matched, an adaptive eye window is displayed on top of the input image. From the adaptive eye window, eyeball tracking is done via ‘IMAQ find circles’ function from LabVIEW Software (by National Instruments) morphology tools palette as shown in Figure 5. This process is continuous until the user presses the stop button.
FIGURE 3. (a) Image subtraction of previous and current frames, (b) Thresholded image of the substracted image.

FIGURE 4. Image data to row and column arrays conversion, d information; (a) Template and online data have equal data, d for column and d for row equal to 0; (b) Template and online data have different data, d for column = 99.875 and d for row = 883.125.
3. Experimental setup and conditions imposed to develop the main results. The experimental setup is shown in Figure 6. The webcam is wired by a USB cable to the notebook. It is assumed that the distance between the user and the webcam is within 50cm. Conditions that are necessary for the system to function properly are:

i. User should be seated in front of the USB webcam.

ii. User should reduce movement while triggering the small motion detector to initiate the system.

iii. User should focus and look into the camera until the eye window is detected and displayed.

iv. To re-initialize the system, the user can make obvious movement which caused the small motion detector to flag ‘false condition’.

Figure 5. ‘IMAQ find circles’ function from LabVIEW Software (by National Instruments) morphology tools palette.

Figure 6. Experiment conditions.
4. Results and discussion. The effectiveness of real time eyeball tracking system is measured by:

i. Users (with glasses and without glasses)
ii. Lighting condition (illumination change)
iii. Pose (turn right, turn left and face down)
iv. Eye orientation
v. Distance
vi. Different age

Figure 7 shows that from the adaptive region of interest window setting, only the eye area is extracted. This eye segment is then converted into gray scale, binarization and finally into one dimension arrays so that it can be processed via DDTW with less computational complexity.

Figure 8, depicts an example of the computation time taken for eye window detection at 0.083 second. After the eye window is detected, the computation time for eyeball detection is around 0.216 second. The time taken for eyeball detection is slightly longer owing to the graphic added to the image such as the caption ‘Eyeball detected!’ and red circle as the marker to the eyeball. The result shows that the total computation time for eye window tracking and eyeball detection is 0.299 second which is reasonable for real time response.

![Figure 7](image_url)

Figure 7. Adaptive region of interest with the extracted image in gray scale, binarization of image, offline arrays and online arrays.
Figure 8. Computation time for eye window tracking and eyeball detection (in second).

Figure 9 displays the effectiveness of the approach which are measured based on users both with glasses and without glasses, varying lighting condition, pose variations, eye orientation, different age and varying distance. The eyeball tracking system worked well with multiple users, for both whether the user is wearing glasses and otherwise. The system also worked well with multiple ages for both adults and children. The robustness of the system was tested by conducting the experiments under pose variations such as left pose, right pose and faces downward. The spacing criterion was also tested so that the user did not have to be very near to the camera hence the user becomes comfortable while using it. The results show that DDTW provides good results under various conditions tested. The illumination problems have been overcome by auto-threshold method which was described in the previous section.

Despite its effectiveness, the system has some limitations such as inability to detect user with very small eyes and very dark eye bag. The system is incapable to withstand vibration if the system is mounted on a moving vehicle.

5. Conclusions. A practical eyeball tracking system should be robust, comfortable to use, cheap and fast enough for real time application. The proposed method has been shown to possess all these attributes. The effectiveness of the approach was measured against users from different ages. Some of them are wearing glasses. The system was also tested under varying lighting conditions, pose variations, eye orientations and camera spacing. The method capitalizes on the flexibility of DDTW to classify the image data based on the shape of the arrays rather than the size of the arrays. By implementing the adaptive region of interest for image extraction, the size of data for classification is reduced to enable faster computation for real time response of the system.

For future works, the system should be refined to increase the accuracy of recognition on users with small eyes and very dark eye bag. When the system is mounted on a moving vehicle, vibration causes the captured image to become blurred. This in turn decreases the recognition rate. These issues need to be addressed before the system can be fully integrated as an interface between human and machine.
FIGURE 9. Results of the real time eyeball tracking in various conditions.
Acknowledgment. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

