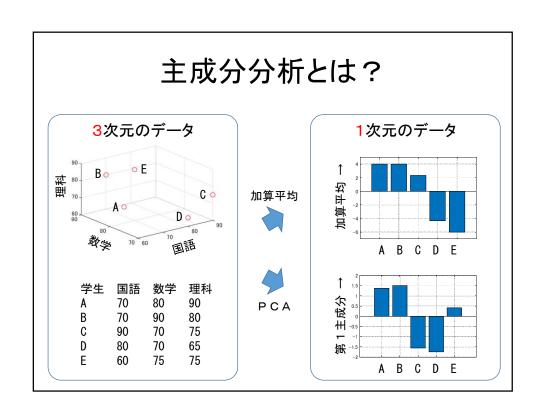
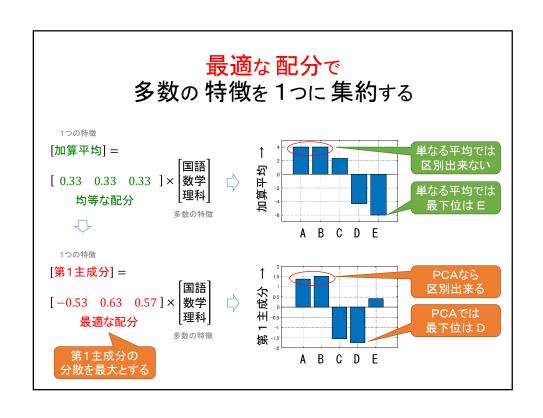
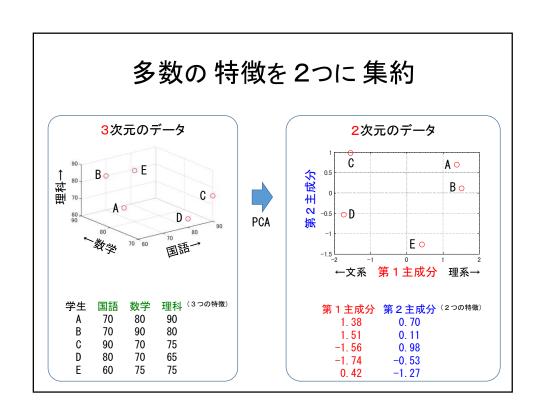
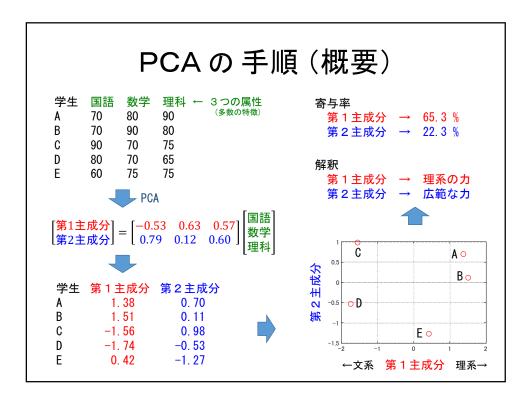
Principal Component Analysis

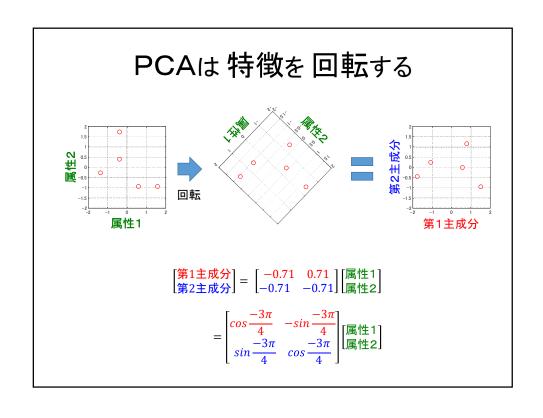
- 1. PCAで特長を集約
- 2. 活用例(ネットで検索)
- 3. PCAの手順(ミスユニバース)
- 4. PCAの手順(ポケモンGo)
- 5. PCAと最小二乗法





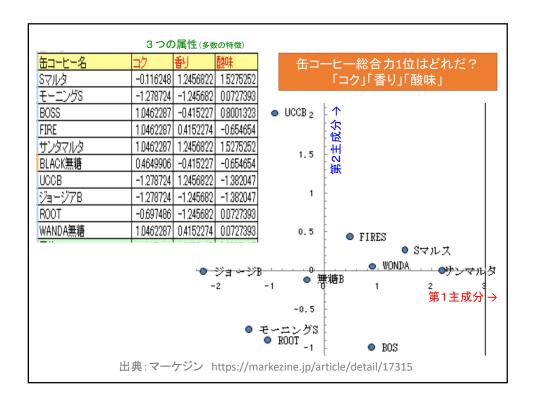


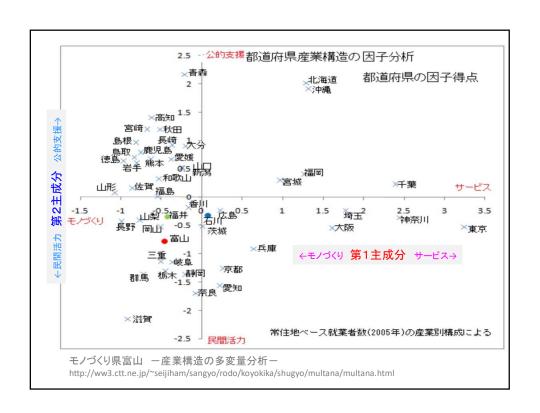




Principal Component Analysis

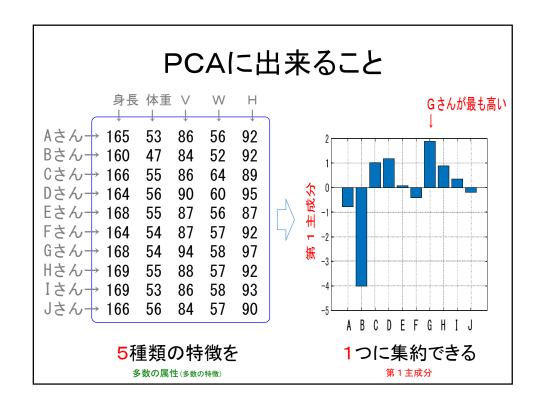
- 1. PCAで特長を集約
- 2. 活用例(ネットで検索)
- 3. PCAの手順(ミスユニバース)
- 4. PCAの手順(ポケモンGo)
- 5. PCAと最小二乗法

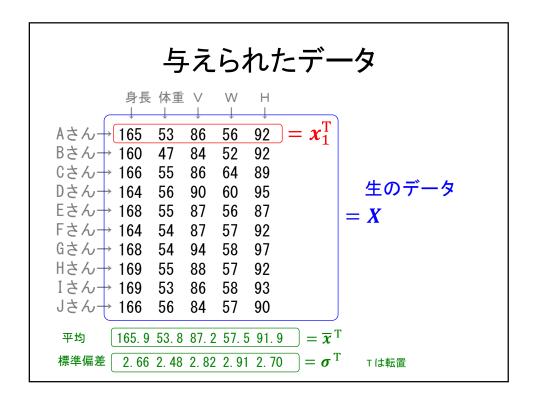


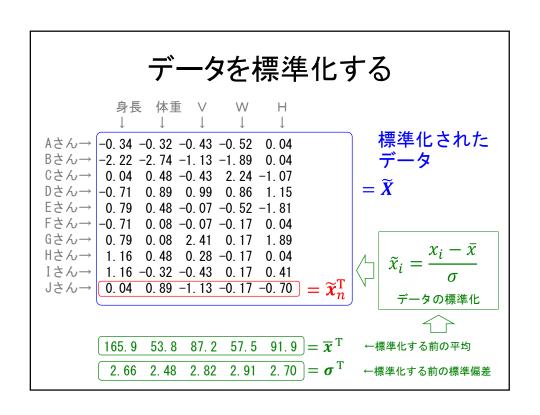


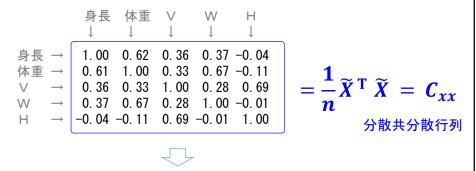
Principal Component Analysis

- 1. PCAで特長を集約
- 2. 活用例(ネットで検索)
- 3. PCAの手順(ミスユニバース)
- 4. PCAの手順(ポケモンGo)
- 5. PCAと最小二乗法



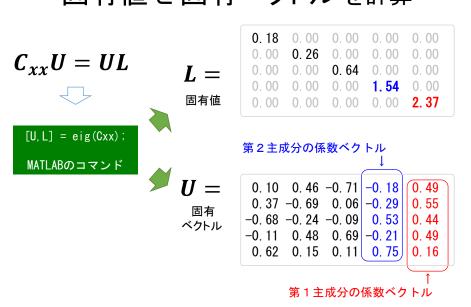


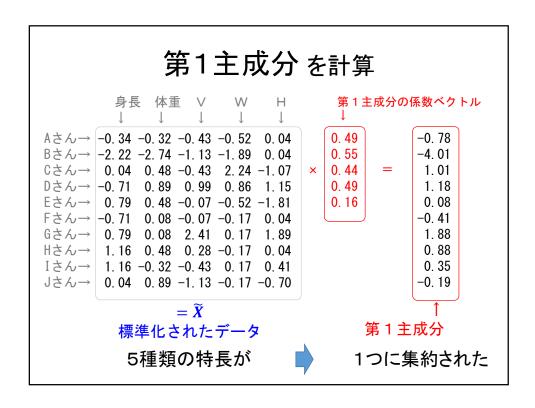


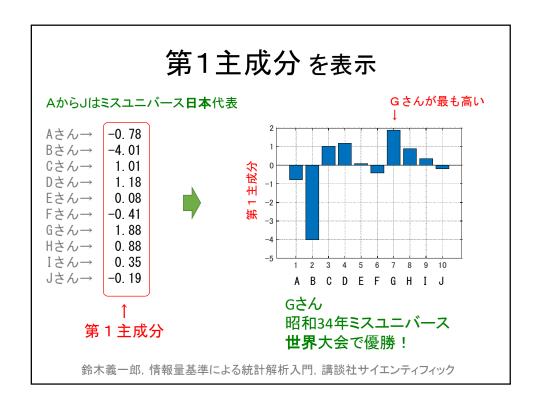


 c_{xx} に対する固有値問題 $c_{xx}U=UL$

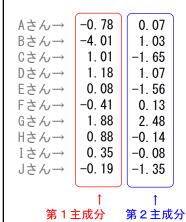
問題を解く







第2主成分も計算





鈴木義一郎,情報量基準による統計解析入門,講談社サイエンティフィック

各成分の意味

身長 体重 V W Н 1 \downarrow Aさん→ -0.34 -0.32 -0.43 -0.52 0.04

0.49 ←身長 高く 0.55 ←体重 重く 0.44 ←∨ 大きく 0.49 \leftarrow W 大きく 0. 16 | ← H

第1主成分の係数ベクトル

全体的な体格の良さ

第2主成分の係数ベクトル

身長 体重 V Н Aさん→ -0.34 -0.32 -0.43 -0.52 0.04

プロポーションの良さ

PCAで特徴量を集約できた 各成分の寄与率

AからJは、 ミスユニバース日本代表

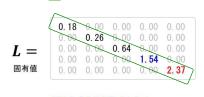
データは, 体型に関する 5 種類の属性

√ PCA

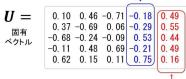
第1主成分の 1 種類だけでも 47.5% を説明できる

第1と2主成分の 2 種類なら 78.3% を説明できる

第1~3主成分の 3 種類なら 91.1% を説明できる 寄与率(%) 3.6 5.2 12.8 30.8 47.5



第2主成分の係数ベクトル ↓



第1主成分の係数ベクトル

特徴を集約する 主成分分析

Principal Component Analysis

- 1. PCAで特長を集約
- 2. 活用例(ネットで検索)
- 3. PCAの手順(ミスユニバース)

PCAの手順(ポケモンGo)

5. PCAと最小二乗法

```
MATLAB
                    ① 元のデータ
                close all; clear all;
                               ----- 元のデータ
                X=[
                           86
                   165
                        53
                                      92;
                                  56
                        47
                                      92;
                   160
                            84
                                  52
                           86
                   166
                        55
                                      89;
                                  64
                           90
                        56
                                 60
                   164
                                      95;
                           87
                   168
                        55
                                 56
                                      87;
                        54 87
                                 57
                   164
                                      92;
                   168
                        54 94
                                     97;
                                 58
                        55 88
                   169
                                 57
                                     92;
                        53 86
                                58
                   169
                                      93;
                        56 84
                   166
                                57
                                      90
                   ];
```

MATLAB

③ 計算の結果

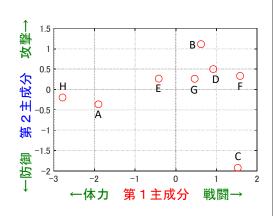
```
235 193 310;
MATLAB
                  239 261 193;
                  330 190 169;
                  189 280 215;
                  264 226 190;
                  487 60 128
                  ];
                end
                [n1, n2]=size(X);
                                 ---- データを標準化
                する
                xm=mean(X);
                % xs=std(X,0);% N-1 で正規化
                xs=std(X,1); %N で正規化
                Xt=(X-xm)./xs;
                               ----- 分散共分散行列
                を計算
                Cxx=Xt'*Xt;
                Cxx=Cxx/n1;
                                ----- 固有値問題
                [U, L] = eig(Cxx);
                                   -- 主成分
                Y=Xt*U;
                                  --- 各成分の寄与率
                fprintf("寄与率\n");
```

Principal Component Analysis

- 1. PCAで特長を集約
- 2. 活用例(ネットで検索)
- 3. PCAの手順(ミスユニバース)
- 4. PCAの手順(ポケモンGo)
- 5. PCAと最小二乗法

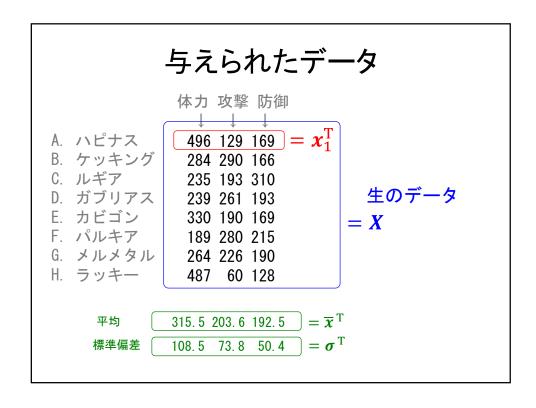
PCAに出来ること

	体力	攻撃	防御
<u>ハピナス</u>	496	129	169
<u>ケッキング</u>	284	290	166
ルギア	235	193	310
ガブリアス	239	261	193
<u>カビゴン</u>	330	190	169
パルキア	189	280	215
メルメタル	264	226	190
ラッキー	487	60	128
	ケッキング ルギア ガブリアス カビゴン パルキア メルメタル	ハピナス 496 ケッキング 284 ルギア 235 ガブリアス 239 カビゴン 330 パルキア 189 メルメタル 264	ハピナス 496 129 ケッキング 284 290 ルギア 235 193 ガブリアス 239 261 カビゴン 330 190 パルキア 189 280 メルメタル 264 226



3種類の特長を

2種類に集約できる



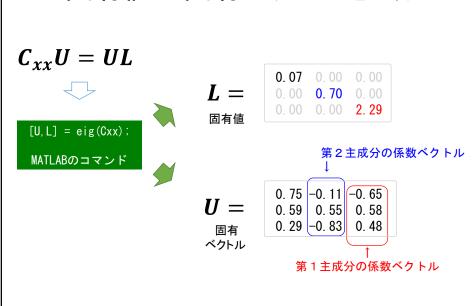


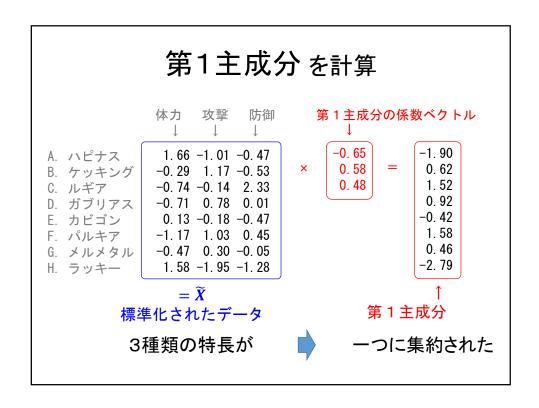
分散共分散行列を計算

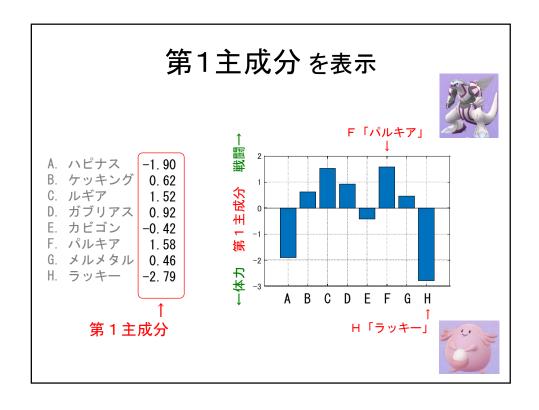
 c_{xx} に対する固有値問題 $c_{xx}U=UL$

問題を解く

固有値と固有ベクトル を計算









PCAで特徴量を集約できた 各成分の寄与率

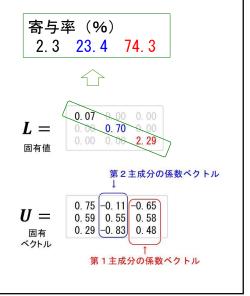
AからHは、 ポケモンのキャラクター

データは, それぞれ, **3** 種類の属性

第1主成分の 1 種類だけでも 74.3 % を説明できる

第1と2主成分の 2 種類なら 97.7%を説明できる

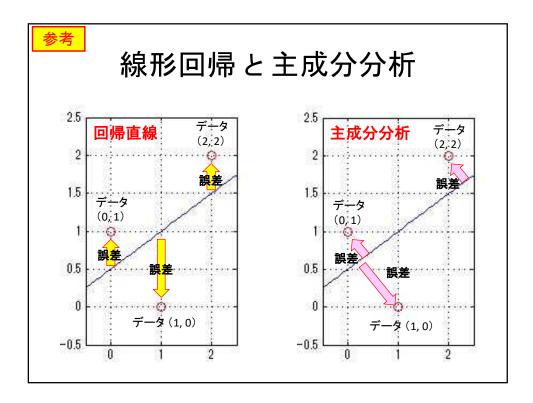
第1~3主成分の3種類なら100%を説明できる



特徴を集約する 主成分分析

Principal Component Analysis

- 1. PCAで特長を集約
- 2. 活用例(ネットで検索)
- 3. PCAの手順(ミスユニバース)
- 4. PCAの手順(ポケモンGo)
- 5. PCAと最小二乗法



参考

共分散行列 の 固有値問題

$$\widehat{\boldsymbol{u}} = \arg\min_{\boldsymbol{u}} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{C}_{xx} \boldsymbol{u} \quad s. t. \ \boldsymbol{u}^{\mathrm{T}} \boldsymbol{u} = 1$$

$$J(\boldsymbol{u}) = \boldsymbol{u}^{\mathrm{T}} \boldsymbol{C}_{xx} \boldsymbol{u} - \lambda (\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u} - 1)$$

$$\frac{\partial J(\boldsymbol{u})}{\partial \boldsymbol{u}} = 2\boldsymbol{C}_{xx} \boldsymbol{u} - 2\lambda \boldsymbol{u} = 0$$

$$\boldsymbol{C}_{xx} \boldsymbol{u} = \lambda \boldsymbol{u}$$

$$L = \operatorname{diag}(\lambda, \dots, \lambda)$$

$$C_{xx}U = UL$$

$$\begin{cases} L = \operatorname{diag}(\lambda_1, \dots, \lambda_m) \\ U = (u_1, \dots, u_m) \end{cases}$$

原田達也「画像認識」講談社

参考

主成分の分散を最大化(1/2)

入力データ
$$\widetilde{x}_i = \begin{bmatrix} \widetilde{x}_{i,1} \\ \widetilde{x}_{i,2} \end{bmatrix}$$
 $(i=1,2,\cdots,n)$ 係数ベクトル $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ 但し, $u_1^2 + u_2^2 = 1$ とする

主成分
$$y_i = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \widetilde{x}_{i,1} \\ \widetilde{x}_{i,2} \end{bmatrix} = \boldsymbol{u} \, \widetilde{\boldsymbol{x}}_i$$

主成分の分散
$$V=rac{1}{n}\sum_{i=1}^n(y_i-ar{y})^2$$
 を最大化するように 係数ベクトル $m{u}$ を決めよ

参考

主成分の分散を最大化(2/2)

最小二乗法
$$(\hat{u}_1, \hat{u}_2) = \underset{u_1, u_2}{\operatorname{arg \, min}} \ V \quad s. \, t. \quad u_1^2 + u_2^2 = 1$$

$$L = u_1^2 s_{11} + 2 u_1 u_2 s_{12} + u_2^2 s_{22} - \lambda \left(u_1^2 + u_2^2 - 1 \right)$$

$$\frac{\partial L}{\partial u_1} = 2u_1 s_{11} + 2u_2 s_{12} - 2\lambda u_1 = 0$$

$$\frac{\partial L}{\partial u_2} = 2u_1 s_{12} + 2u_2 s_{22} - 2\lambda u_2 = 0$$

$$\begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} = C_{xx}$$

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = u$$

$$(C_{xx} - \lambda \mathbf{I}) u = \mathbf{0}$$

$$\begin{bmatrix} s_{11} - \lambda & s_{12} \\ s_{21} & s_{22} - \lambda \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
固有値問題